INDIAN SCHOOL MUSCAT # FIRST PRE-BOARD EXAMINATION ### JANUARY 2021 SET C #### **CLASS XII** # Marking Scheme – SUBJECT [THEORY] | Q.N | Answers | Marks | |-----|--|-----------| | O. | | (with | | | | split | | | | up) | | 1. | Depletion region widens under reverse bias. | | | 2. | Irms=0.35A(formula ½ mark) | 1/2+ 1/2 | | | OR | | | | No change | 1 | | 3. | Balmer Series | 1 | | 4. | 1:1 | 1 | | | OR | OR | | | poles | 1 | | 5. | The sign of the potential energy difference of a small negative charge will be positive. This is | 1 | | | because negative charge moves a point at a lower potential energy to a point at a higher | | | | potential energy. | | | 6. | $ec{P}=\chiec{E}$ | 1 | | 7. | Concave lens | 1 | | 8. | Infrared waves are produced by hot bodies and molecules, so are referred to as heat waves. | 1 | | | OR | OR | | | | | | | 5x10 ¹⁴ Hz, visible region. | 1/2 + 1/2 | | 9. | 6V | 1 | | | OR | | | | (1,3) and (2,4) | 1/2+ 1/2 | | 10. | UV (ii) IR | 1/2+ 1/2 | | 11. | a | | | 12. | a | | | 13. | | 1 | | 14. | d | 1 | | 15. | 1. (b) Diffraction fringes become narrower and crowded | 1 mark | | | 2. (b) should be of the order of wavelength. | each | | | 3. (b) sharper and brighter | (Any | | | 4. (a)Diffraction of sound | 4) | | | 5. (a)interfere constructively at the centre of the shadow | | | | - | | | 16. | 1. C The drift speed decreases on moving from A to B | 1 mark | | | 2. C <i>i</i> /2 | each | | | 3. C does not change | (Any | | | 4. A 16:1 | 4) | |-----|---|--------------| | | 5. B 6.25×10 ¹⁸ | 1 | | | 5. B 0.25×10 | | | 17. | Focal length will be doubled. | 1 | | 1/. | Power will be halved. | | | | rower will be harved. | 1 | | | If the student has applied len's maker's formula, reward ½ mark | | | | if the student has applied len's maker's formula, feward 72 mark | | | 18. | Any two advantages of a light emitting diode over conventional incandescent lamps. | 1+1 | | 10. | OR | 1+1 | | | any two differences between intrinsic and extrinsic semiconductors. | 1+1 | | | any two differences between murisic and extrinsic semiconductors. | 1+1 | | 19. | | 1+1 | | 1). | | 111 | | | Ec Ec | | | | (5) 0.01 ev | | | | Eg Eg Eg EA | | | | <u></u> | | | | EV -0.05 ev | | | | -0.05 eV | | | | | | | | | | | | n-type p-type | | | 20. | Derivation U=Q ² /2C | 1 1/2 | | | Energy density of the capacitor is the energy stored in a capacitor per unit volume. | 1/2 | | | OR | | | | Derivation ι=pEsinθ with diagram | | | | The electric dipole will attain stable equilibrium when the dipole moment is in the direction of | 1 ½ | | | the electric field | 1/2 | | 21. | (a) A toroid is a solenoid bent into the form of a closed ring. The magnetic field lines of | 1 | | | solenoid are straight lines parallel to the axis inside the solenoid. | | | | solehold the straight lines paramet to the taxis histore the solehold. | 1 | | | (b) Inside a given solenoid the magnetic field may be made strong by (i) passing large current | | | | and (ii) using laminated coil of soft iron. | | | 22. | (i) At the given place total earth's magnetic field B is along the vertical direction. Therefore, the | 1 | | | horizontal component of earth's magnetic field | | | | B _H =Bcos90°=0. | | | | •• • • • • • • • • • • • • • • • • • • | | | | (ii) Angle of dip at that place=angle between the axis of needle with the horizontal line in magnetic | 1 | | | meridian=90°. | | | | | | | | OR | | | | Here, $H=B$ and $\delta=60^\circ$. | | | | From $H=R\cos\delta$ | 1 | | | $B = R\cos 60^\circ = R/2$: $R = 2B$ |] - | | | At equator, $\delta=0$ | 1 | | | $\therefore H = R\cos 0^\circ = 2B\cos 0^\circ = 2B$ | | | 23. | (i) Capacitive reactance increases, impedance increases and so current decreases, | 1/2+ 1/2 | | | brightness of the bulb reduces. | | | | (ii) When frequency decreases Capacitive reactance increases, impedance increases and so current decreases, brightness of the bulb reduces. | 1/2+ 1/2 | |-----|---|-----------------------------| | 24. | (a) Gamma rays (ii) X-rays (ii) to protect the eyes from large amount of UV radiations produced by welding arcs. | $\frac{1}{2} + \frac{1}{2}$ | | 25 | labelled ray diagram showing the image formation by a compound microscope. | 1+1 | | - | (i)getting the equation $\lambda = \frac{h}{\sqrt{2meV}}$ | 2 | | | $egin{align} (ext{ii}) & v_0 = rac{\phi_0}{h} = rac{2.14 eV}{6.63 imes 10^{-34} Js} \ & = rac{2.14 imes 1.6 imes 10^{-19} J}{6.63 imes 10^{-34} Js} = 5.16 imes 10^{14} Hz \end{split}$ | 1/2+ 1/2 | | | OR | | | | Einstein's Photoelectric equation, | | | | $hv = \phi_0 + k_{max}$ (i) For a given photosensitive material and frequency of incident radiation (above the | 1/2 | | | threshold frequency), the photoelectric current is directly proportional to the intensity of incident light. | 1/2 | | | (ii) For a given photosensitive material and frequency of incident radiation,
saturation current is found to be proportional to the intensity of incident radiation
whereas the stopping potential is independent of its intensity. Or any other two | 1/2 | | | Energy of one photon = hv
= $(6.6 \times 10^{-34}) \times (6.0 \times 10^{14})$ | 1/2 | | | Number of photons emitted per sec = Power Energy of one photon | 1/2 | | | $n = \frac{2 \times 10^{-3}}{(6.6 \times 10^{-34}) \times (6.0 \times 10^{14})} \therefore n = 5 \times 10^{15}$ | 1/2 | | 27. | (i) Principle of working of potentiometer | 1 | | | $ rac{\mathrm{E}_1}{\mathrm{E}_2} = rac{l_1}{l_2}$ | 1/2 | | | $E_2 = rac{63}{35} imes 1.25 = 2.25$ emf of the second cell is 2.25V. | 1/2 | | | | 1 | |-----|--|----------| | | (ii) Definition of mutual induction | | | | (iii)Expression for the secondary to primary voltage in terms of the number of turns in the two coils. | 1 | | 21 | Vs/Vp=Ns/Np | 1 | | 31. | (a) Definition of wavefront | 1 | | | B Concave Mirror | 1 | | | A Convex Lens | 1 | | | diagram showing the propagation of a plane wavefront from denser to a rarer medium | | | | verifying Snell's law of refraction. | | | | OR | 1 | | | (a) Obtaining the conditions for obtaining constructive and destructive interference fringes at a | | | | point on the screen. | 1 | | | (b) Draw the intensity distribution for (i) the fringes produced in interference and (ii) the | | | | diffraction bands produced due to single slit. | 1 1/2 +1 | | | difficultion builds produced due to single sinc. | 1/2 | | | | | | | | 1+1 | | 32. | (a) A surface around a point charge (or group of charges) with a constant value of potential at | | | | all points on the surface is called an equipotential surface. | 1 | | | If the electric field is not normal to the equipotential surface, then to move a charge q against | | | | the direction of the component of the field, some work would have to be done. But this work | 1 | | | done is in contradiction to the definition of an equipotential surface. If there is no potential | | | | difference, there is no work done. Hence, electric field is directed normally to the | | | | equipotential surface. | | | | | | | | | | | | | 1 | | | | | | | $dr = -\frac{dV}{\mid E \mid}$ | | | | As the value of E decreases it results in angest in the compaction of a maintaintial and | | | | As the value of E decreases, it results increase in the separation of equipotential surfaces from | 1 | | | each other. | | | | $d_1 \longrightarrow d_2 \longrightarrow$ | | |-----|---|----------------| | | V 2V 3V → | 1 | | | | | | | | | | | | | | | $d_1 > d_2$ | | | | OR (a) proving the electric field. | | | | (i) in the outer regions of both the plates is zero. | 1 ½
1 ½ | | | (ii) is σ/ε₀ in the inner region between the charged plates.(b) | 1 72 | | | (i) the electric field decreases by k | 1 | | 22 | (ii) the capacitance of the capacitor increases by a factor k | 1 | | 33. | (a) Definition- mutual inductance and S.I. unit-Henry(b) Deriving an expression for the mutual inductance of two long co-axial solenoids of same | 1/2 + 1/2 | | | length wound one over the other. | 2 | | | $\frac{\mu_0 N_1 N_2 A_2}{I}$ | | | | Given, $\mathrm{radius} = 15\mathrm{cm}, \mathrm{cross-section} = 12\mathrm{cm}^2, \mathrm{N} = 1200$ | | | | The colfinductores of toraid is given by | | | | The self inductance of toroid is given by: | 1+1 | | | $ m l = rac{\mu_0 N^2 A}{2\pi r} = rac{2 imes 10^{-7} (1200)^2 imes 12 imes 10^{-4}}{0.15} = 0.000023 = 2.3 \ mH$ | | | | OR | | | | (a) Statement of the principle of an a.c. generator. | 1
1+1+1 | | | (b) labelled diagram, working and obtaining the expression for the emf generated in the coil.(c) | 1+1 | | | $e= rac{d\phi}{dt}= rac{d}{dt}(BA)=A rac{d}{dt}igg(\mu_0 rac{N}{l}iigg)=A\mu_0igg(rac{N}{l}igg) rac{di}{dt}=ig(2 imes10^{-4}ig) imes4\pi imes10^{-7} imes18$ | 500 imes 20 W | | | dt dt dt $($ ^{-6}V $)$ dt $($ ^{-6}V $)$ dt $($ ^{-6}V | | | | C — 1.0 V 10 | |